
TEST & MEASUREMENT EUROPE/FEBRUARY-MARCH 2000

hen you take measure-
ments on your lab bench,

you often need to record and
display your data. Writing a pro-

gram to capture and plot data can be
tedious. To make Visual Basic (VB)
programming easier, we’ve created
an ActiveX control that simplifies
programming for instruments over
an IEEE-488 interface.

The control lets you send ASCII in-
strument commands to an IEEE-488
card’s driver. Instead of a line of code
that reads CALL ibwrt(22, “waveform:
data?”), you can write a line of code like

scope.output “waveform:
data?” We’ve made the con-
trol available for free down-
loading through Test &
Measurement Europe’s
Web site: www.tmworld.
com. Click on “Software.”

Whenever you develop
an application that controls
instruments, you should
start by checking for com-
munications between your
computer and instruments.
If you don’t do this and you
later develop a communica-
tion problem, you won’t
know if the problem is in
your code, the instrument setup, or the
IEEE-488 interface card, or even if you
forgot to connect the IEEE-488 cable.
So, we added a feature to the control
that lets us check communications with
instruments while Visual Basic is at the
design mode. With this control, we can
check communications without running
the application we’re developing.

We’ll show you how to use the con-
trol to establish communications with
your instruments. We’ll also show you
how to use Microsoft’s Visual Basic

chart control to plot
data. Our example uses
an HP 54602B oscillo-
scope, but you can
apply our programming
concepts to any scope
— or any instrument,

for that matter.
We’ll assume you

know how to config-
ure the scope’s sen-
sitivity or trigger
settings. If you
need a refresher on
how to set up a
scope under com-
puter control, see

the article referenced in footnote 1.
The following examples use Visual

Basic 5.0 professional or better and a
HP 54600 series scope with an IEEE-
488 module. You’ll also need an
IEEE-488 interface card from either
Agilent Technologies or National In-
struments.

Getting the Control
To use the control, your computer
needs to have Windows 98 (or Win-
dows 95 OSR2) or Internet Explorer
4.0 or later installed.2 Your first step
is to download the control, called
TMWControl, from the T&ME Web
site (www.tmworld.com). Unzip the
file and run the setup.exe program.
Open Visual Basic, then select “New”
and “Standard EXE” to start a new
project. A blank form will appear. Be
sure that the Toolbox is visible. If not,
select the toolbox from the “View”
menu. Add the “TMW Instrument I/O
Control” to your toolbox from the
Components dialog box (right click on
the toolbox, or use Ctrl-T).

Put the control on a form. Visual Basic
will name the control TMWControl1,
but we changed the control’s name to

SOFTWARE

Use this downloadable
ActiveX custom control

to operate IEEE-488
instruments. And learn

how to use a Visual Basic
chart to plot data.

Werner Haussmann and Alicia Viskoe
Agilent Technologies

W

ActiveX Control Simplifies
Instrument Programming

�

www.tmworld.com20

An ActiveX control lets you set the I/O address from a
Property Page and lets you test the connection during development.
FIGURE 1

This Property Page lets you communicate with
the instrument during design time. The Output/Enter button
executes the Output command and if a query is sent, exe-
cutes the Enter command.

FIGURE 2

21TEST & MEASUREMENT EUROPE/FEBRUARY-MARCH 2000 www.tmworld.com

�

“scope” for this article. Each instance
of the control can communicate with
just one instrument, so you must add
one instance of the control to your
Visual Basic project for each instru-
ment you have. Give each control a
different — but descriptive — name
like scope, DMM, or FunctionGen.

Now, you can test communications
between your PC and your instru-
ment right from the Visual Basic
form. To communicate with your in-
strument, right-click on the control
and select Properties. You’ll get a set

I/O and instrument property page.
Once you set up the address for the
IEEE-488 card and the instrument,
click on the Test button. You should
see the Instrument Test Result
screen (Fig. 1) that contains the in-
strument’s ID — if your instrument is
IEEE-488.2 compliant. If your in-
strument isn’t IEEE-488.2 compli-
ant, you must use the Instrument
page to verify communications.

In general, older instruments that
are IEEE-488 compatible but not
IEEE-488.2 compatible may require

an LF added at the end of every
string sent with the Output command
(for example, TMWControl1.Output
“R2” & vbCrLf). Another way to
achieve this is to set the termination
of the output and input using the I/O
object like this:

TMWControl1.io.
WriteTerminator = 10

TMWControl1.io.
ReadTerminator = 10

With communications established,
you can try out some instrument com-
mands in the “Instrument” Property
Page. Figure 2 shows where you type
an instrument command for output to
the instrument and where the Enter
button returns a response from the
instrument.

Next, you’re ready to use the con-
trol’s embedded automation server to
control instruments through Visual
Basic code. In your code, use a con-
trol’s commands to produce actions.
The two commands you’ll most often
use are “Output” for sending ASCII
strings to instruments and “Enter”
for receiving data.

To see a brief description of the
“Output” command, the “Enter” com-
mand, and any other of the control’s
commands, press the F2 key or click on
“Object Browser” in the “View” menu.
Select TMWControl where “All Li-
braries” is shown. To see details of the
IO object, in the menu go to “Project,
References” and click on “IO Manager
and Utilities”. You’ll then be able to
see the commands that the control ex-
poses with its I/O library. Alterna-
tively, you can place the cursor on the
method or property name while view-
ing Visual Basic code and press the F1
key. You will then see a help page for
that method or property.

To check that you can communicate
with the instrument through code,
place a button on the form, add the fol-
lowing code in the button_click sub-
routine, and run the program. If you
receive a response identifying your
instrument, then you have communi-
cated with it.

Dim reply As String
scope.Output “*IDN?”
scope.Enter reply

MsgBox reply

This general-purpose control will

Listing 1. This code returns and scales the waveform data from the instrument
using the provided control. It demonstrates sending strings, retrieving parsed
numeric data, and retrieving IEEE-488 block data. (The complete control is available
at www.tmworld.com. Click on “Software”.)

Sub GetWaveformData(Channel As Long,
Points As Long, time, data)

' Gets the waveform data from the HP546xx
' scope given the channel and number of points

Dim Preamble(10) As Double
Dim ydata As Variant
Dim address As String
Dim strChannel As String
Dim i As Long

scope.address = txtAddress.Text
' set scope for number of points and then
' get the preamble and return waveform
' as byte data
strChannel = "Channel" & Format$(Channel)
With scope

.Output "Waveform:points " & Points

.Output "Waveform:Source " & strChannel

.Output "Waveform:Preamble?"

.Enter Preamble()

.Output "Waveform:Format byte"

.Output "Waveform:data?"
' this gets the IEEE block data
.Enter ydata, "I1"

End With

' dimension data for the needed size
ReDim data(Points - 1)
ReDim time(Points - 1)

' scale the data to volts and seconds
For i = 0 To UBound(ydata)

data(i) = (ydata(i) - Preamble(9)) * _
Preamble(7) + Preamble(8)

time(i) = ((i - Preamble(6)) * _
Preamble(4)) + Preamble(5)

Next i ' 0 to Ubound of ydata
End Sub

22 TEST & MEASUREMENT EUROPE/FEBRUARY-MARCH 2000

work for instruments that
accept string commands. You
can go further by encapsulat-
ing code unique to an instru-
ment into your own custom
control. You just expose the
command GetWavformData,
and have it return the data
array. You will then have an
ActiveX control unique to
your instrument. In effect,
you’ll have created a custom
instrument driver. (To learn
more about how to build your
own control, see the article in
footnote 3.)

Now that you have code to
control your instrument, you
can get data and plot a waveform.
Scopes can return thousands — or
even millions — of waveform data
points. To transfer the data quickly,
the HP 54600 returns the data as sim-
ple bytes in an IEEE-488 block for-
mat. The scope also returns a pream-
ble with 10 fields that contain scaling
information about the data.

With a scope, you’re mostly inter-
ested in the y-axis (volts) and x-axis
(time) scale factors. With these para-
meters, you can reconstruct the wave-
form. Listing 1 shows you how to use
the function GetWaveformData() to

retrieve data from the scope.
To get the preamble, use the con-

trol’s Enter command with an array.
Scopes often have a command that
lets them send the preamble to the
host computer.

Dim Preamble(10) As Double
scope.Output “Waveform:
Preamble?”

scope.Enter Preamble()

When you use the control’s Enter
property with an array that is a nu-
meric data type, the control parses the
string returned from the scope into an

array. You can check the data in the
array with a “For Next” loop and the
debug print property. We created a
debug button with code that lets us
look at the preamble on the form.
Look at the data in the “Immediate
Window” available from Visual Basic’s
“View” menu.

Dim I As Long
For I = 0 to 9
Debug.print
Preamble(I)

Next I

The waveform’s amplitude data (y
value) is in IEEE-488 block format,
which is a standardised block of data
preceded by a header. You can gener-
ate the x value because the y data is
equally spaced in time, and the pream-
ble tells you the time between each
point. The code segments below
demonstrate how to get data from the
scope. Both examples are acceptable,
although the code that uses the “With”
statement will run somewhat faster.

Dim ydata As Variant
scope.Output “Waveform:
Format byte”
scope.Output “Waveform:data?”
scope.Enter ydata, “I1”

You can also write the code like this:

With scope
.Output “Waveform:Format
byte”

.Output “Waveform:data?”

.Enter ydata, “I1”
End With

Graph the Data
Once you can get data from your instru-
ments into arrays, you can use Visual
Basic’s chart control to view the data.
Start by referencing the chart control in
your Visual Basic project; press Ctrl-T
and select “Microsoft Chart Control” to
place the control in the toolbox. Now,
place the chart control on the form. Set
the graph as a two-dimensional line
graph. The line graph scales the data
and draws the needed grids.

You can make these settings in the
property pages or in code. We suggest
you use code to avoid wrong settings.
Figure 3shows a Visual Basic form con-
taining a chart that plots two signals.

Next, you must set up the data for
the chart. The chart control’s Chart-
Data(property) command, which loads

SOFTWARE�

www.tmworld.com

�

Listing 2. This routine accepts an MSChart and an array of Variants as input to plot the
data, set the divisions on the chart, and label the x-axis based on the time data in the
first column.

Sub MakeGraph(chart As MSChart, Data() As Variant)
' Plots the data to as graph

Dim points As Long
Dim ptsPerDivision As Long
Dim xDivision As Double
Dim xAxisTitle

points = UBound(Data)
ptsPerDivision = points / 10
xDivision = (Data(2, 0) - Data(1, 0)) * ptsPerDivision
xAxisTitle = Format$(xDivision) & " sec per division"
With chart
.Plot.Axis(VtChAxisIdX).AxisTitle = xAxisTitle
.Plot.SeriesCollection(1).Position.Excluded = True
.Plot.Axis(VtChAxisIdX).CategoryScale.Auto = False
.Plot.Axis(VtChAxisIdX).CategoryScale.DivisionsPerTick

= ptsPerDivision
.legend.Location.Visible = True
.chartType = VtChChartType2dLine
.ChartData = Data

End With
End Sub

Add a chart control to your Visual Basic form
to plot data.
FIGURE 3

25

SOFTWARE�
data into a chart, requires a two-di-
mensional variant for its input. You can
use the first row (row 0) of each column
to store labels or legends. If you use
this method to feed data to the control,
the graph will automatically plot and
label the channels by colour.

Table 1 shows the structure of an
array for plotting data from two scope
channels. We prefer to put the time

data in the first column but not plot it
because the time between samples is
constant. You can tell the graph to
hide the first column of data, yet you
still have easy access to the data if you
need to view it. The chart creates one
line for each column of data you want
to plot.

The following code creates the
array to plot channel one. We added
the “+1” in the ReDim statement,
which allows for the extra string la-
bels in row 0:

Dim data() as Variant
ReDim data(0 To
UBound(ydata) + 1, 1 To 2)
data(0, 1) = “time”
data(0, 2) = “Ch 1”
For i = 0 To UBound(ydata)
data(i + 1, 1) = timedata(i)
data(i + 1, 2) = ydata(i)
Next i

Once you’ve created the data array,
you can feed the data to the chart with
the code in Listing 2. The first line of
the code below hides Series 1 (column
1, time data). The second line chooses
the type of chart, and the last line gives
it the data array. The code also scales
the grid and annotates the x-axis.

MSChart1.Plot.
SeriesCollection(1).
Position.Excluded =
False

MSChart1.chartType
=VtChChartType2dLine

MSChart1.ChartData = data

With the TMWControl and with Vi-
sual Basic’s chart control, you have a
powerful set of tools for building quick
applications for controlling instruments.

While we use these controls mostly for
automating tests to evaluate engineer-
ing prototypes, you can also use them to
automate product tests. T&ME

Footnotes
1. Muterspaugh, Helen, “Program Your
Scope from a PC”, Test & Measurement
World, October 1998, p. 39, www.tmworld.
com/articles/program_dso_1098.htm
2. If you have neither Windows 98 (or Win-
dows 95 OSR2) nor Internet Explorer, you
can download Explorer from www.microsoft.
com. Or, if you prefer not to install Explorer,
you can download and install DCOM95 from
www.microsoft.com/com/DCOM/dcom95/
dcom1_3.asp.
3. Freeman, Michael, “Create Your Own Ac-
tiveX Controls”, Test & Measurement World,
September 1998, p. 39.

Werner Haussmann is an R&D project
manager with Agilent Technologies. Ali-

cia Viskoe is a software engineer with
Agilent Technologies.

� If you have technical questions about the
TMWControl, contact Werner Haussmann
at werner_haussmann@agilent.com.

ENTER 10 AT TMWORLD.COM/TIX

"Time" "Ch 1" “Ch 2"
x-axis_data(1) Ch_1_Data(1) Ch_2_Data(1)
x-axis_data(2) Ch_1_Data(2) Ch_2_Data(2)

Table 1. Array Structure

�

